危机管理是管理领域新出现的一个热点研究领域,它是以市场竞争中危机的出现为研究起点,分析企业危机产生的原因和过程,研究企业预防危机、应付危机、解决危机的手段和策略,以增强企业的免疫力、应变力和竞争力,使管理者能够及时准确地获取所需要的信息,迅速捕捉到企业可能发生危机的一切可能事件和先兆,进而采取有效的规避措施,在危机发生之前对其进行控制,趋利避害,从而使企业能够适应迅速变化的市场环境,保持长久的竞争优势。但是由于危机产生的原因复杂,种类繁多,许多因素难以量化,而且危机管理中带有大量不确定因素的半结构化问题和非结构化问题,很多因素由于没有历史数据和相应的统计资料,很难进行科学地计算和评估,因此需要应用其它技术和方法来加强企业的危机管理工作。
一、数据挖掘的基本概念及常用的方法
随着计算机技术、网络技术、通讯技术、Internet技术的迅速发展和电子商务、办公自动化、管理信息系统、Internet的普及等,企业业务操作流程日益自动化,企业经营过程中产生了大量的数据,这些数据和由此产生的信息是企业的宝贵财富,它如实地记录着企业经营的本质状况。但是面对如此大量的数据,传统的数据分析方法,如数据检索、统计分析等只能获得数据的表层信息,不能获得其内在的、深层次的信息,管理者面临着数据丰富而知识贫乏的困境。如何从这些数据中挖掘出对企业经营决策有用的知识是非常重要的,数据挖掘便是为适应这种需要应运而生的。
1.数据挖掘的基本概念
数据挖掘(Data Mining,DM)又称数据库中的知识发现(Knowledge Discover in Database,KDD),是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。
2.数据挖掘常用的方法
利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。 ①分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。 ②回归分析。回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。 ③聚类。聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。 ④关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。 ⑤特征。特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。 ⑥变化和偏差分析。偏差包括很大一类潜在有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。在企业危机管理及其预警中,管理者更感兴趣的是那些意外规则。意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。 ⑦Web页挖掘。随着Internet的迅速发展及Web 的全球普及, 使得Web上的信息量无比丰富,通过对Web的挖掘,可以利用Web 的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息、客户等有关的信息,集中精力分析和处理那些对企业有重大或潜在重大影响的外部环境信息和内部经营信息,并根据分析结果找出企业管理过程中出现的各种问题和可能引起危机的先兆,对这些信息进行分析和处理,以便识别、分析、评价和管理危机。
二、数据挖掘在危机管理中的应用
数据挖掘是一种新的信息处理技术,其主要特点是对企业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助经营决策的关键性数据,它在企业危机管理中得到了比较普遍的应用,具体可以应用到以下几个方面。
1.利用Web页挖掘搜集外部环境信息
信息是危机管理的关键因素。在危机管理过程中,可以利用Web 页挖掘技术对企业外部环境信息进行收集、整理和分析,尽可能地收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息、消费者等与企业发展有关的信息,集中精力分析处理那些对企业发展有重大或潜在重大影响的外部环境信息,抓住转瞬即逝的市场机遇,获得企业危机的先兆信息,采取有效措施规避危机,促使企业健康、持续地发展。
2.利用数据挖掘分析企业经营信息
利用数据挖掘技术、数据仓库技术和联机分析技术,管理者能够充分利用企业数据仓库中的海量数据进行分析,并根据分析结果找出企业经营过程中出现的各种问题和可能引起危机的先兆,如经营不善、观念滞后、产品失败、战略决策失误、财务危机等内部因素引起企业人、财、物、产、供、销的相对和谐平衡体遭到重大破坏,对企业的生存、发展构成严重威胁的信息,及时做出正确的决策,调整经营战略,以适应不断变化的市场需求。
3.利用数据挖掘识别、分析和预防危机
危机管理的精髓在于预防。利用数据挖掘技术对企业经营的各方面的风险、威胁和危险进行识别和分析,如产品质量和责任、环境、健康和人身安全、财务、营销、自然灾害、经营欺诈、人员及计算机故障等,对每一种风险进行分类,并决定如何管理各类风险;准确地预测企业所面临的各种风险,并对每一种风险、威胁和危险的大小及发生概率进行评价,建立各类风险管理的优先次序,以有限的资源、时间和资金来管理最严重的一种或某几类风险;制定危机管理的策略和方法,拟定危机应急计划和危机管理队伍,做好危机预防工作。
4.利用数据挖掘技术改善客户关系管理
客户满意度历来就是衡量一个企业服务质量好坏的重要尺度,特别是当客户的反馈意见具有广泛效应的时候更是如此。目前很多企业利用营销中心、新闻组、 BBS以及呼叫中心等收集客户的投诉和意见,并对这些投诉和意见进行分析,以发现客户关系管理中存在的问题,如果有足够多的客户都在抱怨同一个问题,管理者就有理由对其展开调查,为企业及时捕捉到发生危机的一切可能事件和先兆,从而挽救客户关系,避免经营危机。
5.利用数据挖掘进行信用风险分析和欺诈甄别
客户信用风险分析和欺诈行为预测对企业的财务安全是非常重要的,使用企业信息系统中数据库的数据,利用数据挖掘中的变化和偏差分析技术进行客户信用风险分析和欺诈行为预测,分析这些风险为什么会发生?哪些因素会导致这些风险?这些风险主要来自于何处?如何预测到可能发生的风险?采取何种措施减少风险的发生?通过评价这些风险的严重性、发生的可能性及控制这些风险的成本,汇总对各种风险的评价结果,进而建立一套信用风险管理的战略和监督体系,设计并完善信用风险管理能力,准确、及时地对各种信用风险进行监视、评价、预警和管理,进而采取有效的规避和监督措施,在信用风险发生之前对其进行预警和控制,趋利避害,做好信用风险的防范工作。
6.利用数据挖掘控制危机
危机一旦爆发,来势迅猛,损失严重,因此危机发生以后,要采取有力的措施控制危机,管理者可以利用先进的信息技术如基于Web 的挖掘技术、各种搜索引擎工具、E-mail自动处理工具、基于人工智能的信息内容的自动分类、聚类以及基于深层次自然语言理解的知识检索、问答式知识检索系统等快速地获取危机管理所需要的各种信息,以便向客户、社区、新闻界发布有关的危机管理信息,并在各种媒体尤其是公司的网站上公布企业的详细风险防御和危机管理计划,使全体员工能够及时获取危机管理信息及危机最新的进展情况。这样企业的高层管理人员、公关人员、危机管理人员和全体员工就能随时有准备地应付任何复杂情况和危急形势的压力,对出现的危机立即做出反应,使危机的损失降到最低。
危机就是危险和机遇,企业的每一次危机既包含了导致失败的根源,又蕴藏着成功的种子,发现、培育,进而收获潜在的成功机会,就是危机管理的精髓;而错误地估计形势,并令事态进一步恶化,则是不良危机管理的典型特征。企业应加强危机管理工作,利用先进的数据挖掘技术加强企业的危机管理工作,以便准确及时地获取所需要的危机信息,迅速捕捉到企业可能发生危机的一切事件和征兆,进而采取有效的规避措施,在危机发生之前对其进行控制,趋利避害,从而使企业能够适应迅速变化的市场环境,保持长久的竞争优势,实现可持续发展战略。
【参考文献】1 徐宝文,张丰卫.数据挖掘技术在Web预取中的应用研究[J].计算机学报,2001,24(4) 2 罗伯特,希斯[美].危机管理[M].北京:中信出版社,2001。 3 基特.塞德格洛夫[英].罗平岩译.商务风险管理完全指南[M].沈阳出版社,2001。 4 玛丽莲.格林斯坦[美].电子商务的安全与风险管理[M]. 北京:华夏出版社,2001。 5 诺曼・R・奥古斯丁[美].危机管理[M]. 北京:中国人民大学出版社,2001。 6 Robert Heath. Looking for answers: suggestions for improvinghow we evaluate Cr*** management. Safety Science 30(1998) 7 John M. Penrose. The role of perception in Cr*** Planning.Public Relation Review,26(2)
展开全文